Web Analytics Made Easy - Statcounter
Odontología digital

Inteligencia Artificial en Odontología, una realidad en constante evolución

Denti AI REVISION LITERARIA SEPES DM70
FOTO: Denti AI.

La llegada de la digitalización al sector odontológico ha supuesto un irrefutable cambio de paradigma para los profesionales dedicados a esta especialidad sanitaria. Sin embargo, puede que nuestro concepto de “nuevas tecnologías” tome pronto una nueva forma de ser visto y entendido. La introducción cada día más exhaustiva de recursos de Inteligencia Artificial (IA) en Medicina ha precipitado también un rápido avance de ésta en la Odontología.

Autores: Dra. Mónica Bonfanti Gris, Dra. María Paz Salido Rodríguez-Manzaneque, Dr. Ángel Herrera Martín y Dr. Guillermo Pradíes Ramiro.

 

¿Qué es la Inteligencia Artificial (IA)?

El término de Inteligencia Artificial (IA) fue acuñado por el informático John McCarthy en 1956, pero fue Frank Rosenblat, en 1957, quien diseñó la primera red neuronal o “cerebro inteligente”.

La IA puede ser definida como la capacidad de ciertas máquinas para imitar el conocimiento y comportamiento humanos a partir de la implementación de una secuencia de algoritmos (neuronas artificiales). Se trata de una forma automatizada de realizar actividades relacionadas con las habilidades humanas, incluyendo la capacidad de aprendizaje, toma de decisiones y la resolución de problemas. En el mundo biosanitario, este concepto tiene por objetivo intentar facilitar y mejorar la capacidad diagnóstica y terapéutica de los profesionales a través de la alimentación del “cerebro artificial” por medio de infinitas fuentes de datos “data”.

Cuando hablamos de “Big Data” en Inteligencia Artificial, nos referimos al conjunto de datos o combinaciones de estos que permiten establecer un punto de referencia de entre toda la información aportada hasta el momento al sistema. Se trata, por tanto, del motor a partir del cual se nutre la IA. Podría decirse que, gracias a ello, se agiliza el procesamiento de un gran volumen de datos.

Este tipo de tecnología tan revolucionaria (IA) está compuesta de una secuencia de “neuronas artificiales” cuya conexión crea diferentes capas que, junto con la aplicación de determinadas operaciones matemáticas, desarrollan una red que permite la resolución de una tarea en concreto, como puede ser la clasificación de estructuras en imágenes radiográficas.

La IA engloba los siguientes campos de estudio:

1. Machine Learning (ML): se trata de sistemas de algoritmos con la capacidad de aprender a partir del “data” que es aportado, sin ser explícitamente programados para ello. Está principalmente diseñado para predecir resultados basándose en un conjunto de datos obtenidos de forma previa (a partir de los cuales se ha nutrido y, por ende, aprendido).

2. Deep Learning (DL): se trata de un subtipo de ML en el cual las redes neuronales artificiales tienen la capacidad de adaptarse y aprender de grandes cantidades de data. Normalmente se encargan de identificar patrones y/o características comunes presentes en la información suministrada (data) de forma automática.

Pese a la complejidad de estos sistemas matemáticos, hemos de tener en cuenta que llevamos coexistiendo con ellos desde hace años. Un ejemplo claro que tal vez todos conozcamos es el desbloqueo automático de nuestros dispositivos móviles a través del reconocimiento facial o dactilar.

Sistemas automáticos de corrección gramatical presentes cuando escribimos mensajes o documentos, o incluso lo que visualizamos en las plataformas de redes sociales están basadas en IA.

Aplicaciones de la IA en la Medicina

Hasta ahora, el uso de la IA en las diferentes especialidades médicas ha permitido una mejora no sólo en el proceso de diagnóstico de los pacientes, sino también en la toma de decisiones de los profesionales ante casos complejos y de difícil manejo.

De entre todas las especialidades médicas, se han descrito resultados muy positivos de su empleo en la detección de diversas patologías cardiovasculares, retino-oculares y dermatológicas. De hecho, esta última es, probablemente, el área en el que se han producido los mayores avances en relación con esta nueva tecnología: se han publicado estudios sobre la detección de nevus y la clasificación de los mismos (en malignos o benignos), así como sobre la determinación de la gravedad de enfermedades inflamatorias comunes (como la psoriasis, la urticaria o algunas patologías autoinmunes bullosas) (1). Recientemente, la tan conocida empresa Google (Google Health) lanzó una aplicación basada en IA capaz de detectar afecciones cutáneas comunes con la misma predicción que un dermatólogo. Sus resultados fueron publicados en la prestigiosa revista Nature Medicine.

Aplicaciones de la IA en la Odontología

Pero ¿qué aplicaciones podemos encontrar hoy en día en nuestro sector? Por muy inverosímil que parezca, llevamos unos años coexistiendo con la IA. Determinadas marcas líderes dentales han desarrollado cepillos dentales inteligentes que evalúan la técnica de higiene del paciente (2), indicándoles en qué zonas han de profundizar su rutina dento-higiénica.

Otro claro ejemplo de IA es la automatización de planes de tratamiento ortodóncicos que han sido desarrollados por múltiples compañías a través de los escaneados 3D de las bocas de nuestros pacientes. Este caso, probablemente, ha sido la aplicación más económica y laboralmente relevante en los últimos años.

Sin embargo, es importante conocer la situación actual de este tipo de tecnologías y cómo pueden afectarnos de cara al futuro. Hasta ahora, se han descrito varios estudios científicos en los que se utilizan este tipo de “nuevas tecnologías” en el ámbito protésico con el fin de ayudar al clínico en la precisión de la preparación dentaria para prótesis fijas o en el registro de movimientos mandibulares (3,4). Además, existen ciertos sistemas que son capaces de predecir, en las revisiones periódicas de nuestros pacientes, la posibilidad de descementado de coronas o aflojamiento de coronas sobre implantes (5,6). Asimismo, cabe destacar la capacidad de ciertos escáneres intraorales de reconocer y eliminar estructuras anejas no importantes (lengua, carrillos, etc.) para el diseño y creación de restauraciones protésicas.

No obstante, ¿cuál está siendo la línea de investigación odontológica líder en este momento? El diagnóstico. Por el momento se han descrito estudios en los que se ha puesto a prueba la capacidad diagnóstica de diferentes tipos de redes neuronales en el diagnóstico tanto de imágenes fotográficas (detección de placa bacteriana, caries, etc.) como de aquellas radiográficas (2D y 3D).

En los últimos años se ha dado mucho peso a cómo este tipo de aplicaciones podrían mejorar la capacidad diagnóstica de los profesionales odontólogos, teniendo especialmente en consideración que no todos están igualmente formados ni poseen la misma experiencia clínica (lo cual, indudablemente, puede interferir en su capacidad crítica y de análisis). Es por ello por lo que la IA puede ser de gran utilidad: su automatización puede guiar al clínico en la toma de una mejor decisión para asegurar un buen pronóstico del paciente.

En nuestro grupo de investigación hemos comenzado a realizar los primeros estudios de evaluación de programas de detección radiológica 2D basados en IA disponibles en la Web, en los que se evaluaron la capacidad de un programa basado en IA (Denti.Ai) para la detección de patologías cariosas en radiografías de aleta de mordida y para la determinación de un diagnóstico general del paciente incluyendo qué estructuras dentarias y tratamientos estaban o no presentes en radiografías panorámicas (7). No obstante, en lo que se refiere a imágenes en 2D, el principal foco de atención está actualmente centrado en la detección patologías (como tumores mandibulares, fracturas radiculares o posibles signos radiológicos asociados al Síndrome de Sjögren) y en la identificación y clasificación de diversas tipologías de implantes dentales (marca comercial) (8,9).

En el último año se han incrementado los estudios que incluyen imágenes en 3D (Diagnocat), pero su avance es más lento por la complejidad de procesamiento de las pruebas radiológicas utilizadas. Su principal objetivo es la segmentación y clasificación tridimensional de las distintas estructuras oro-faciales. No obstante, existen artículos publicados en importantes revistas internacionales que describen su utilización para la detección de lesiones periapicales, conductos dentarios, etc.

En definitiva, se podría concluir que la IA está comenzado a adentrarse en todas las especialidades odontológicas sin que seamos enteramente conscientes de ello. Es un futuro que ya está en nuestro presente. Es cuestión de tiempo que su aprendizaje entre de pleno en nuestros ámbitos de trabajo.

Descargar artículo completo

 

También puede consultar el número 70 de DM El Dentista Moderno

 

Más noticias
INCYDE CAMARA DE COMERCIO  48 (2)
Eventos

En el acto institucional “Donde nacen las ideas: historias reales desde el ecosistema de incubación empresarial”, celebrado en la sede de INCYDE, se ha visibilizado el impacto real y tangible de un modelo pionero de innovación y cohesión territorial.

FACULTAD ODONTOLOGÍA UCM
Actualidad

La Complutense sigue siendo la Universidad más solicitada de la Comunidad de Madrid para el curso 2025-26.

Alberto Monje posado
Entrevistas a doctores/as

Con el objetivo puesto en simplificar la labor del clínico, el Congreso SEPA Barcelona 2025, que se celebrará del 26 al 29 de noviembre, ha diseñado para esta edición especial un programa práctico y con las últimas tendencias, gracias a la participación de expertos de reconocido prestigio mundial. Así lo avanza en esta entrevista el Dr. Alberto Monje, vocal de la Junta Directiva de SEPA, quien destaca además la perspectiva multidisciplinar de este encuentro en el que tanto la utilidad de las tecnologías emergentes, el uso de inteligencia artificial y el tratamiento de las enfermedades periimplantarias serán protagonistas.

Tabaco fumar cigarro pexels geri tech 3769679 5813080
Portada

Fumar o vapear no solo afecta a los pulmones, sino que también dificulta la cicatrización, reduce el oxígeno, altera el microbioma bucal y aumenta el riesgo de infecciones como la periimplantitis: una inflamación crónica que puede hacer fracasar el implante incluso años después.

Aula Dentaid Barcelona
Eventos

Los espacios interdentales siguen siendo los grandes olvidados por el 62% de la sociedad en su rutina diaria de higiene.

 

Esta formación se ha llevado a cabo en 11 ciudades de diferentes puntos de España

Vaso con hielo pexels srattha nualsate 2695613 12986384
Actualidad

Existe un trastorno compulsivo denominado pagofagia, que puede provocar daños graves en el esmalte dental, fracturas y dolor de muelas y articulaciones maxilares.

ChatGPT Image 11 jul 2025, 11 33 37
Actualidad

La doctora Laura Pérez alerta de que el verano es una época especialmente delicada para quienes llevan ortodoncia, férula de descarga o retenedores, ya que un despiste en vacaciones puede echar por tierra meses de tratamiento.

Sepa Academy investigacion odontol
Actualidad

Este curso pretende que los alumnos sean competentes en la realización de los pasos necesarios para poder llevar a término una investigación de calidad (protocolo de investigación, análisis estadístico, redacción de la publicación).

Imagen reunión fenin y SSCC código ético
Eventos

La Federación Española de Empresas de Tecnología Sanitaria ha celebrado un encuentro con sociedades científicas del ámbito médico y de la enfermería para poner en valor el Código Ético del sector respecto al marco de colaboración entre ambas partes.

NÚMERO 90 - Edición Especial 2025 // 2025
Suplemento Número 95 Jun-Jul - HAGER WERKEN // 2025
NÚMERO 95 // 2025
DM Dentista Moderno
Buscador
Empresas destacadas